

# **T.J.S ENGINEERING COLLEGE**

IEDCO

Otabu



#### TJS Nagar, Peruvoyal, Near Kavaraipettai, Gummidipoondi Taluk, Thiruvallur District -601206

| Department of Electronics and Communication Engineering |          |                  |                                                       |  |
|---------------------------------------------------------|----------|------------------|-------------------------------------------------------|--|
| Course Outcomes – ODD-EVEN Semester 2018-19             |          |                  |                                                       |  |
| Sl. No.                                                 | Semester | Theory/Practical | Course Code / Course Name                             |  |
| 1                                                       | 3        | Theory           | MA8352 -Linear Algebra and Partial Differential       |  |
| 2                                                       | 3        | Theory           | EC8393 -Fundamentals of Data Structures In C          |  |
| 3                                                       | 3        | Theory           | EC8351 -Electronic Circuits- I                        |  |
| 4                                                       | 3        | Theory           | EC8352 -Signals and Systems                           |  |
| 5                                                       | 3        | Theory           | EC8392 -Digital Electronics                           |  |
| 6                                                       | 3        | Theory           | EC8391-Control Systems Engineering                    |  |
| 7                                                       | 3        | Practical        | EC8381-Fundamentals of Data Structures in CLaboratory |  |
| 8                                                       | 3        | Practical        | EC8361-Analog and Digital Circuits Laboratory         |  |
| 9                                                       | 3        | Practical        | HS8381-Interpersonal Skills / Listening & Speaking    |  |
| 10                                                      | 4        | Theory           | MA8451- Probability and Random Processes              |  |
| 11                                                      | 4        | Theory           | EC8452- Electronic Circuits II                        |  |
| 12                                                      | 4        | Theory           | EC8491- Communication Theory                          |  |
| 13                                                      | 4        | Theory           | EC8451- Electromagnetic Fields                        |  |
| 14                                                      | 4        | Theory           | EC8453- Linear Integrated Circuits                    |  |
| 15                                                      | 4        | Theory           | GE8291- Environmental Science & Engineering           |  |
| 16                                                      | 4        | Practical        | EC8461- Circuit Design & Simulation Laboratory        |  |
| 17                                                      | 4        | Practical        | EC8462- Linear Integrated Circuits Laboratory         |  |
| 18                                                      | 5        | Theory           | EC6501 - Digital Communication                        |  |
| 19                                                      | 5        | Theory           | EC6502 – Principles of Digital Signal Processing      |  |
| 20                                                      | 5        | Theory           | EC6504- Microprocessors & Microcontrollers            |  |
| 21                                                      | 5        | Theory           | EC6503- Transmission Lines and Wave Guides            |  |
| 22                                                      | 5        | Theory           | GE6351- Environmental Science and Engineering         |  |
| 23                                                      | 5        | Practical        | EC6511 - Digital Signal Processing Laboratory         |  |
| 24                                                      | 5        | Practical        | EC6512 -Communication Systems Laboratory              |  |
| 25                                                      | 5        | Practical        | EC6513- Microprocessors & Microcontrollers Laboratory |  |
| 26                                                      | 6        | Theory           | EC6601- VLSI Design                                   |  |
| 27                                                      | 6        | Theory           | EC6602- Antenna and Wave Propagation                  |  |
| 28                                                      | 6        | Theory           | CS6551- Computer Networks                             |  |
| 29                                                      | 6        | Theory           | MG6591- Principles of Management                      |  |
| 30                                                      | 6        | Theory           | CS6303- Computer Architecture                         |  |
| 31                                                      | 6        | Theory           | EC6001- Medical Electronics                           |  |
| 32                                                      | 6        | Practical        | EC6611- Computer Networks Laboratory                  |  |
| 33                                                      | 6        | Practical        | EC6612- VLSI Design Laboratory                        |  |
| 34                                                      | 6        | Practical        | GE6674- Communication and Soft Skills Laboratory      |  |
| 35                                                      | 7        | Theory           | EC6701-RF and Microwave Engineering                   |  |
| 36                                                      | 7        | Theory           | EC6702 -Optical Communication and Networks            |  |

| 39 | 7 | Theory    | EC6703 -Embedded and Real Time Systems     |
|----|---|-----------|--------------------------------------------|
| 40 | 7 | Theory    | EC6004 – Satellite Communication           |
| 41 | 7 | Theory    | EC6009 – Advanced computer Architecture    |
| 42 | 7 | Theory    | EC6015 – Radar and Navigational Aids       |
| 43 | 7 | Practical | EC6711- Embedded Laboratory                |
| 44 | 7 | Practical | EC6712 -Optical and Microwave Laboratory   |
| 45 | 7 | Theory    | EC6801- Wireless Communication             |
| 46 | 8 | Theory    | EC6802 -Wireless Networks                  |
| 47 | 8 | Theory    | GE6075 -Professional Ethics in Engineering |
| 48 | 8 | Theory    | GE6757 -Total Quality Management           |
| 49 | 8 | Practical | EC6811- Project Work                       |

## Third Semester (Academic Year 2018-19)

| COs | Course Outcome: The students, after the completion of the course, are         |  |
|-----|-------------------------------------------------------------------------------|--|
|     | expected to                                                                   |  |
| CO1 | Understanding the basic notions associated with vector spaces and its         |  |
| CO2 | Discuss the concept of linear transformation, eigenvalues and eigenvectors of |  |
| CO3 | Relate the concept of inner product space in orthogonalization                |  |
| CO4 | Understanding the fundamental concepts of partial differential equations and  |  |
| CO5 | Utilize the Fourier series problems in current flow, sound waves              |  |
| CO6 | Able to formulate and solve the physical problems of engineering.             |  |

#### MA8352 - Linear Algebra and Partial Differential Equations

#### EC8393 - Fundamentals of Data Structures In C

| COs | Course Outcome: The students, after the completion of the course, are    |  |
|-----|--------------------------------------------------------------------------|--|
|     | expected to                                                              |  |
| CO1 | Understand the basic features of C Programming and their applications    |  |
| CO2 | Enumerate the structured data types and dynamic memory objects and apply |  |
| CO3 | Implement various linear data structures operations in C                 |  |
| CO4 | Implement various non linear data structures operations in C             |  |
| CO5 | Analyze the various searching and sorting algorithms and appropriately   |  |
| CO6 | Analyze a hash table and overflow handling                               |  |

| COs | Course Outcome: The students, after the completion of the course, are                |
|-----|--------------------------------------------------------------------------------------|
| CO1 | Design the amplifier circuits using various biasing methods.                         |
| CO2 | Analyze the single stage and multistage BJT amplifiers using small signal equivalent |
| CO3 | Analyze JFET amplifiers using small signal equivalent model.                         |
| CO4 | Analyze MOSFET amplifiers using small signal equivalent model.                       |
| CO5 | <b>Determine</b> the frequency response of single stage and multistage amplifiers.   |
| CO6 | Design and fault analyze dc power supplies.                                          |

EC8351 -Electronic Circuits- I

| EC8352 – | Signals | & Systems |  |
|----------|---------|-----------|--|
|----------|---------|-----------|--|

| COs | Course Outcome: The students, after the completion of the course, are |
|-----|-----------------------------------------------------------------------|
| CO1 | Examine the operation of signals.                                     |
| CO2 | Analyze the Continuous time signals using Transforms                  |
|     | Examine the Continuous time LTI systems using Transforms              |
| CO4 | Illustrate the effect of aliasing through Baseband sampling theorem   |
| CO5 | Analyze the Discrete time signals using Transforms                    |
|     | Demonstrate the Discrete time LTI systems using Transforms            |

#### EC8392 – Digital Electronics

| COs | Course Outcome: The students, after the completion of the course, are           |
|-----|---------------------------------------------------------------------------------|
|     | expected to                                                                     |
| CO1 | Analyze different types of digital electronic circuit using various mapping and |
| CO2 | Design various combinational digital circuits using logic gates                 |
| CO3 | Perform the analysis and design of synchronous sequential circuits              |
| CO4 | Perform the analysis and design of asynchronous sequential circuits             |
| CO5 | Assess the nomenclature and technology in the area of memory devices and        |
| CO6 | Analyze the electronic circuits involved in the design of logic gates           |

#### EC8391 – Control Systems Engineering

| COs | Course Outcome: The students, after the completion of the course, are expected to |
|-----|-----------------------------------------------------------------------------------|
| CO1 | Distinguish various mathematical modeling of physical systems                     |
| CO2 | Perform time domain analysis and its compensation technique required to           |
| CO3 | Perform frequency domain analysis and its compensation technique required         |
| CO4 | Analyze the stability of the control system using various techniques              |
| CO5 | Perform the state variable analysis of the control system                         |
| CO6 | Analyze the sampled data control system.                                          |

|                                                         | Practicals                                                                          |  |
|---------------------------------------------------------|-------------------------------------------------------------------------------------|--|
| EC8381- Fundamentals of Data Structures in C Laboratory |                                                                                     |  |
| COs                                                     | Course Outcome: The students, after the completion of the course, are               |  |
|                                                         | expected to.                                                                        |  |
| CO1                                                     | To understand and implement basic data structures using C                           |  |
| CO2                                                     | To write basic and advanced programs in C                                           |  |
| CO3                                                     | To apply linear and non-linear data structures in problem solving.                  |  |
| CO4                                                     | To learn to implement functions and recursive functions by means of data            |  |
| CO5                                                     | To implement searching and sorting algorithms                                       |  |
|                                                         | EC8361 – Analog & Digital Circuits Laboratory                                       |  |
| COs                                                     | Course Outcome: The students, after the completion of the course, are               |  |
| CO1                                                     | Design and test rectifiers, filters and regulated power supplies                    |  |
| CO2                                                     | Design and test digital logic circuits                                              |  |
| CO3                                                     | Analyze various amplifiers using BJT and FET                                        |  |
| CO4                                                     | Determine the differences between cascade and cascode amplifiers                    |  |
| CO5                                                     | Measure CMRR in a differential amplifier                                            |  |
| CO6                                                     | Simulate and analyze analog and digital circuits using Pspice                       |  |
|                                                         | HS8381-Interpersonal Skills / Listening & Speaking                                  |  |
| COs                                                     | Course Outcome: The students, after the completion of the course, are expected to   |  |
| CO1                                                     | Understand the Listening and responding appropriately                               |  |
| CO2                                                     | Participate in group discussions                                                    |  |
| CO3                                                     | Make effective presentations                                                        |  |
| CO4                                                     | Make effective interpretations                                                      |  |
| CO5                                                     | Participate confidently in conversations both formal and informal                   |  |
| CO6                                                     | Participate appropriately in conversations both formal and informal                 |  |
|                                                         | Fourth Semester (Academic Year 2018-19)<br>MA8451- Probability and Random Processes |  |
| COs                                                     | Course Outcome: The students, after the completion of the course, are               |  |

| COs | Course Outcome: The students, after the completion of the course, are           |
|-----|---------------------------------------------------------------------------------|
| CO1 | Understand the fundamental knowledge of the concepts of probability and         |
| CO2 | Understand the basic concepts of one and two-dimensional random variables       |
| CO3 | Apply the concept random processes in engineering disciplines.                  |
| CO4 | Understand and apply the concept of correlation and spectral densities.         |
| CO5 | Able to analyze the response of random inputs to linear time invariant systems. |
| CO6 | The students will have an exposure of various distribution functions and help   |

| COs                            | Course Outcome: The students, after the completion of the course, are            |  |  |
|--------------------------------|----------------------------------------------------------------------------------|--|--|
| COS<br>CO1                     | Analyze different types of amplifier with negative feedback                      |  |  |
|                                |                                                                                  |  |  |
| CO2                            | Design & Analysis of transistorized RC Oscillators & LC oscillators              |  |  |
| CO3                            | Analyze transistorized tuned amplifiers                                          |  |  |
| CO4                            | Analysis of wave shaping circuits                                                |  |  |
| CO5                            | Design & Analysis of multivibrators                                              |  |  |
| CO6                            | Summarize the operation of power amplifiers.                                     |  |  |
|                                | EC8491- Communication Theory                                                     |  |  |
| COs                            | Course Outcome: The students, after the completion of the course, are            |  |  |
| CO1                            | Discuss the principle concepts and the spectral characteristics of various       |  |  |
| CO2                            | Discuss the principle concepts and the spectral characteristics of various angle |  |  |
| CO3                            | Interpret the properties and concepts of random process in the design of         |  |  |
| CO4                            | Demonstrate the performance of noise in AM and FM systems.                       |  |  |
| CO5                            | Gain knowledge in sampling and quantization.                                     |  |  |
| CO6                            | Discuss the principle concepts of Pulse communication system.                    |  |  |
| EC8451- Electromagnetic Fields |                                                                                  |  |  |
| Cos                            | Course Outcome: The students, after the completion of the course, are            |  |  |
| CO1                            | Explain the concept of field potentials due to static charges                    |  |  |
| CO2                            | How materials(Conductors, Dielectrics, etc) affect electric fields               |  |  |
| CO3                            | Explain the concept of field potentials due to magnetic fields                   |  |  |
| CO4                            | To understand wave propagation in lossless and in lossy                          |  |  |
| CO5                            | Analyze the relation between the fields under time varying                       |  |  |
| CO6                            | Find the fundamental relations for time varying fields using                     |  |  |
|                                | EC8453- Linear Integrated Circuits                                               |  |  |
| COs                            | Course Outcome: The students, after the completion of the course, are            |  |  |
| CO1                            | Describe the characteristics of operational amplifiers.                          |  |  |
| CO2                            | Design the various linear and non-linear applications of op-amp.                 |  |  |
| CO3                            | Apply the multiplier IC's and PLL in various applications                        |  |  |
| CO4                            | Compare the specifications of ADC and DAC.                                       |  |  |
| CO5                            | Design oscillators and voltage regulators                                        |  |  |
| CO6                            | Infer the applications of special function IC's.                                 |  |  |
| GE8291- Environn               | nental Science & Engineering                                                     |  |  |
| COs                            | Course Outcome: The students, after the completion of the course, are            |  |  |
| CO1                            | Definition, scope and importance of Risk and hazards                             |  |  |
| CO2                            | About the Concepts Of an ecosystem.                                              |  |  |
| CO3                            | Explain the types of Natural Resources                                           |  |  |
| CO4                            | Outline the Social Issues and the Environment.                                   |  |  |
| CO5                            | Compare the Human Population and the Environment.                                |  |  |
| CO6                            | Role of information technology in environment and human health.                  |  |  |
|                                | Practicals                                                                       |  |  |

EC8452- Electronic Circuits II

#### EC8461- Circuit Design & Simulation Laboratory

| COs | Course Outcome : The students, after the completion of the course, are |
|-----|------------------------------------------------------------------------|
| CO1 | Analyze various feedback amplifiers                                    |

| CO2 | Design oscillators and determine their frequency of operation                |
|-----|------------------------------------------------------------------------------|
| CO3 | Construct tuned amplifiers and determine their resonant frequency            |
| CO4 | Design waveshaping circuits and observe their waveforms                      |
| CO5 | Analyze multivibrator circuits and their output waveforms                    |
| CO6 | Simulate feedback amplifiers, multivibrators and wave shaping circuits using |

EC8462- Linear Integrated Circuits Laboratory

- COs Course Outcome : The students, after the completion of the course, are expected to ....
- CO1 Design Oscillators and Amplifiers using operational amplifiers
- CO2 Design filters using OPAMP and perform experiment on frequency response
- CO3 Analyze the working of PLL and use PLL as frequency multiplier
- CO4 Design DC power supply using ICs
- CO5 Analyze the performance of oscillators and multivibrators using PSPICE
- CO6 Utilize PSPICE Software for circuit design

### Fifth Semester (Academic Year 2018-19) EC6501 - Digital Communication

| COs | Course Outcome : The students, after the completion of the course, are      |
|-----|-----------------------------------------------------------------------------|
| CO1 | Learn the basic concepts of Information theory and source coding techniques |
| CO2 | Understand and compare différent waveform coding schemes.                   |
| CO3 | Analyse the principles involved in Baseband signal Transmission and         |
| CO4 | Compare différent digital modulation schemes and design of non coherent     |
| CO5 | Interpret the knowledge on channel coding.                                  |
| CO6 | Learn and relate différent error control coding schèmes.                    |

#### EC6502- Principles of Digital Signal Processing

| COs | Course Outcome : The students, after the completion of the course, are         |
|-----|--------------------------------------------------------------------------------|
| CO1 | Analyze the discrete time systems, linear and circular convolutions.           |
| CO2 | Apply DFT & FFT to analyze discrete time signal.                               |
| CO3 | Design IIR filter by impulse invariance and bilinear transformation technique. |
| CO4 | Construct FIR filter and develop the windowing technique.                      |
| CO5 | Examine the finite word length effects and minimize the quantization errors.   |
| CO6 | Remember the applications of the DSP                                           |

|     | GE6351- Environmental Science & Engineering                                   |
|-----|-------------------------------------------------------------------------------|
| COs | Course Outcome: The students, after the completion of the course, are         |
| CO1 | Definition, scope and importance of Risk and hazards                          |
| CO2 | About the Concepts Of an ecosystem.                                           |
| CO3 | Explain the types of Natural Resources                                        |
| CO4 | Outline the Social Issues and the Environment.                                |
| CO5 | Compare the Human Population and the Environment.                             |
| CO6 | Role of information technology in environment and human health.               |
|     | EC6503- Transmission Lines & Wave Guides                                      |
| Cos | Course Outcome: The students, after the completion of the course, are         |
| CO1 | Discuss the various types of transmission lines and propagation of signals.   |
| CO2 | Examine signal propagation at Radio frequencies                               |
| CO3 | Implement different methods of impedance matching                             |
| CO4 | Analyze the field components in guided systems                                |
| CO5 | Explain the RF system design Concepts.                                        |
| CO6 | Analyze the RF amplifier power and stability considerations                   |
|     | EC6504- Microprocessors & Microcontrollers                                    |
| COs | Course Outcome: The students, after the completion of the course, are         |
| CO1 | To discuss the architecture of 8086 microprocessor and acquire skills in 8086 |
| CO2 | To design the system using 8086                                               |
| CO3 | To classify the various interfacing techniques with 8086                      |
| CO4 | To discuss the architecture of 8051 microcontroller                           |
| CO5 | To program various devices using 8051                                         |
| CO6 | To interface the various devices using 8051                                   |
|     | Practical                                                                     |

## EC6511 - Digital Signal Processing Laboratory

| COs | Course Outcome: The students, after the completion of the course, are       |
|-----|-----------------------------------------------------------------------------|
| CO1 | Carryout basic signal processing operations                                 |
| CO2 | Design and Implement the FIR and IIR Filters using MATLAB                   |
| CO3 | Demonstrate their abilities towards MATLAB based implementation of          |
| CO4 | Analyze the architecture of a DSP Processor                                 |
| CO5 | Design and Implement the FIR and IIR Filters in DSP Processor for           |
| CO6 | Design a DSP system for various applications of DSP                         |
|     | EC6513- Microprocessors & Microcontrollers Laboratory                       |
| Cos | Course Outcome: The students, after the completion of the course, are       |
| CO1 | Experiment with 8086 Microprocessor to write ALP for basic Arithmetic,      |
| CO2 | Experiment with 8086 Microprocessor to display System date, Size, Time      |
| CO3 | Make use of Interfacing Kits with processor for applications like stepper   |
| CO4 | Utilize interfacing Kits with processor to generate waveforms, A/D ,D/A and |
| CO5 | Experiment with 8051 Microcontroller to write ALP for basic Arithmetic,     |

| EC6512 -Communication Systems Laboratory |                                                                              |
|------------------------------------------|------------------------------------------------------------------------------|
| COs                                      | Course Outcome: The students, after the completion of the course, are        |
| CO1                                      | To visualize the effects of sampling and TDM                                 |
| CO2                                      | To Implement AM & FM modulation and demodulation                             |
| CO3                                      | Simulate end-to-end Communication Lin                                        |
| CO4                                      | Demonstrate their knowledge in base band signaling schemes through           |
| CO5                                      | Apply various channel coding schemes & demonstrate their capabilities        |
| CO6                                      | simulate & validate the various functional modules of a communication system |

## Sixth Semester (Academic Year 2018-19) CS6303 - Computer Architecture

| Course Outcome: The students, after the completion of the course, are |
|-----------------------------------------------------------------------|
| Describe the basic organization of modern computer systems.           |
| Implement fixed and floating point arithmetic operations in computer  |
| Illustrate pipelined control units.                                   |
| Summarize the performance of memory systems.                          |
| Understand the parallel processing technique                          |
| Summarize the multiprocessors technique                               |
|                                                                       |

| COs | Course Outcome: The students, after the completion of the course, are       |
|-----|-----------------------------------------------------------------------------|
| CO1 | To classify the components required to build different types of networks    |
| CO2 | To illustrate the functionality of Media Access and Internetwork            |
| CO3 | To summarize the various Routing Mechanism                                  |
| CO4 | To explain the overview of Transport Layer and its Application requirements |
| CO5 | To study about the flow control and congestion control                      |
| CO6 | To describe the Traditional Application Layer.                              |

#### EC6001 - Medical Electronics

| COs | Course Outcome: The students, after the completion of the course, are<br>expected to |
|-----|--------------------------------------------------------------------------------------|
| CO1 | Discuss the characteristics of the bioelectric signals                               |
| CO2 | Describe the measurement techniques for various non electrical parameters.           |
| CO3 | Illustrate the working of human assist devices                                       |
| CO4 | Discuss the operation of diathermy equipments.                                       |
| CO5 | Describe the principle of Bio -Telemetry.                                            |
| CO6 | Explain the recent trends in diagnosis & Therapy                                     |

#### EC6601- VLSI Design

| COs | Course Outcome: The students, after the completion of the course, are |
|-----|-----------------------------------------------------------------------|
| CO1 | Realize the concepts of digital building blocks using MOS transistor. |
| CO2 | Design combinational MOS circuits and power strategies.               |
| CO3 | Design and construct Sequential Circuits and Timing systems.          |
| CO4 | Design arithmetic building blocks and memory subsystems.              |
| CO5 | Apply and implement FPGA design flow.                                 |
| CO6 | Apply the design techniques for testability and manufacturability.    |

| COs | Course Outcome: The students, after the completion of the course, are           |
|-----|---------------------------------------------------------------------------------|
| CO1 | Explaining the basic principles, concepts, evolution of management thinking,    |
| CO2 | Apply knowledge on Planning tools and techniques. Discuss the stages in         |
| CO3 | Illustrate the concepts of organizing and its steps of an organization.         |
| CO4 | Assess and compare different leadership styles and select appropriate style for |
| CO5 | Explain the process of controlling and various controlling techniques           |
| CO6 | Illustrate the use of computers and IT in management to control productivity    |

#### MG6591- Principles of Management

#### **Practical** EC6611 -Communication Networks Laboratory

| COs | Course Outcome: The students, after the completion of the course, are         |
|-----|-------------------------------------------------------------------------------|
| CO1 | Establishing communication between computers                                  |
| CO2 | Implementing various networking protocols and establishing connection         |
| CO3 | Program a network using sockets and exchange information                      |
| CO4 | Implementing various routing protocols and maintaining a secure data transfer |
| CO5 | Summarize and compare various routing protocols                               |
| CO6 | Simulate various types of topologies and understanding the differences        |

|   | EC | .0012- | VLS | ID | esign | Lar | orat | ory |   |
|---|----|--------|-----|----|-------|-----|------|-----|---|
| - |    | -      |     | -  |       |     | -    |     | - |

| Cos | Course Outcome: The students, after the completion of the course, are      |
|-----|----------------------------------------------------------------------------|
| CO1 | Recall the basics of Verilog language                                      |
| CO2 | Develop HDL code for basic as well as advanced digital integrated circuits |
| CO3 | Model NAND, NOR and Inverter using Microwind layout design                 |
| CO4 | Plan to place and route the logic modules                                  |
| CO5 | Design and simulation of analog IC blocks using EDA tool                   |
| CO6 | Layout Extraction of analog IC blocks using EDA tool                       |

GE6674-Communication and Soft Skills Laboratory

| Cos | Course Outcome: The students, after the completion of the course, are      |
|-----|----------------------------------------------------------------------------|
| CO1 | Understand the Listening and responding appropriately                      |
| CO2 | Participate in group discussions                                           |
| CO3 | Make effective presentations                                               |
| CO4 | Participate confidently and appropriately in conversations both formal and |
| CO5 | Attend job interviews and be successful in them                            |
| CO6 | Develop adequate Soft Skills required for the workplace                    |

## Seventh Semester (Academic Year 2018-19)

EC6701-RF and Microwave Engineering

| Cos | Course Outcome: The students, after the completion of the course, are  |
|-----|------------------------------------------------------------------------|
| CO1 | Formulate Scattering parameters for 2 port RF Networks                 |
| CO2 | Discuss RF Amplifier design and Perform Impedance matching             |
| CO3 | Classify microwave frequency range and Implement microwave components  |
| CO4 | Discuss microwave semiconductor devices                                |
| CO5 | Examine mathematically the working principle of microwave conventional |
| CO6 | Carry out the measurements at microwave frequencies                    |

#### EC6702 -Optical Communication and Networks

| С | 08 | Course Outcome: The students, after the completion of the course, are |
|---|----|-----------------------------------------------------------------------|
|---|----|-----------------------------------------------------------------------|

| CO1 | Classify different elements of ray optics and discuss electromagnetic mode             |
|-----|----------------------------------------------------------------------------------------|
| CO2 | Discuss the channel impairments in optical waveguides and examine coupling             |
| CO3 | Classify light sources and detectors                                                   |
| CO4 | Examine optical receiver operation and differentiate different measurement             |
| CO5 | Describe basic optical networks                                                        |
| CO6 | Outline on classification, performance of optical networks                             |
|     | EC6703 -Embedded and Real Time Systems                                                 |
| Cos | Course Outcome: The students, after the completion of the course, are                  |
| CO1 | Define the Architecture and programming of ARM Processor.                              |
| CO2 | Outline the Concepts Of real time embedded systems and computing platforms.            |
| CO3 | Explain the basics Of real time operating systems with examples and apply the          |
| CO4 | Build the System design techniques to develop software for embedded                    |
| CO5 | Compare the several purpose operating system and real time operating system.           |
| CO6 | Design the various real time applications using system concepts.                       |
|     | EC6004 – Satellite Communication                                                       |
| Cos | Course Outcome: The students, after the completion of the course, are                  |
| CO1 | Analyze the satellite orbits.                                                          |
| CO2 | Analyze the earth segment.                                                             |
| CO3 | Analyze the space segment.                                                             |
| CO4 | Analyze various satellite access                                                       |
| CO5 | Design various satellite applications                                                  |
| CO6 | Analyze system noise of transmitter and receiver earth station.                        |
|     | EC6009 – Advanced Computer Architecture                                                |
| COs | Course Outcome: The students, after the completion of the course, are                  |
| CO1 | Evaluate performance of different architectures with respect to various parameters     |
| CO2 | Analyze performance of different ILP techniques                                        |
| CO3 | Design and anlayse pipelined control units                                             |
| CO4 | Evaluate performance of memory systems                                                 |
| CO5 | Understand parallel processing architectures.                                          |
| CO6 | Identify cache and memory related issues in multi-processors                           |
|     | EC6015 – Radar and Navigational Aids                                                   |
| COs | Course Outcome: The students, after the completion of the course, are                  |
| CO1 | To understand the principles of basic radar communication.                             |
| CO2 | To apply Doppler principle to radars and hence detect moving targets, cluster, also to |
| CO3 | To refresh principles of antennas and propagation as related to radars, also study of  |
| CO4 | To understand the principles of navigation.                                            |
| CO5 | To understand the concepts of landing aids as related to navigation.                   |
| CO6 | To understand the concepts of satellite Navigation system.                             |
|     |                                                                                        |

| EC6711- Embedded Laboratory |                                                                       |  |
|-----------------------------|-----------------------------------------------------------------------|--|
| COs                         | Course Outcome: The students, after the completion of the course, are |  |
| CO1                         | Develop the program in ARM for RGB led based applications             |  |
| CO2                         | Interface memory and write program related to memory operation        |  |
| CO3                         | Analyze the performance of wireless communication services            |  |
| CO4                         | Develop program for interfacing keyboard display                      |  |
| CO5                         | Develop program for interfacing stepper motor                         |  |
| CO6                         | Formulate a mini project using embedded system                        |  |
| P                           |                                                                       |  |

#### **Practicals** EC6711- Embedded Laboratory

## EC6712 -Optical and Microwave Laboratory

| COs | Course Outcome: The students, after the completion of the course, are         |
|-----|-------------------------------------------------------------------------------|
| CO1 | Inspect the behaviour of various microwave components and devices             |
| CO2 | Estimate analog and digital link frequency response of an optical fiber cable |
| CO3 | Examine the various connector and bending losses prevailing in an optical     |
| CO4 | Measure the characteristics of directional coupler, isolator, circulator and  |
| CO5 | Test the radiation pattern and formulate the efficiency of microwave antenna  |
| CO6 | Discuss the DC characteristics of LED and Photo diode and calculate its       |

#### Eighth Semester (Academic Year 2018-19)

#### EC6801- Wireless Communication

| COs | Course Outcome: The students, after the completion of the course, are        |
|-----|------------------------------------------------------------------------------|
| CO1 | Explain the Characteristics of fading in wireless channels                   |
| CO2 | Describe the fundamentals of Cellular Architecture                           |
| CO3 | Use various signaling schemes for wireless communication channels            |
| CO4 | Compare the performance of channel using various propagation models          |
| CO5 | Analyze the various mitigation techniques to address fading and interference |
| CO6 | Explain the Characteristics of fading in wireless channels                   |

#### EC6802 -Wireless Networks

| COs | Course Outcome: The students, after the completion of the course, are          |
|-----|--------------------------------------------------------------------------------|
| CO1 | Explain various standards and technologies in wireless LAN                     |
| CO2 | Illustrate packet delivery and routing mechanism used in mobile network layer. |
| CO3 | Compare traditional and classical TCP in mobile transport layer.               |
| CO4 | To explain overview of UTMS terrestrial radio access network.                  |
| CO5 | To describe about 4G networks vision, features and challenges.                 |
| CO6 | Summarize LTE networks, their architectures and the protocols involved.        |

#### **GE6075** - Professional Ethics in Engineering

| COs | Course Outcome: The students, after the completion of the course, are            |
|-----|----------------------------------------------------------------------------------|
| CO1 | Create awareness on human values and apply ethics in society.                    |
| CO2 | Identify an ethical issue and assess variety of moral issues using ethical       |
| CO3 | Analyze engineering, social experimentation and engineers as responsible         |
| CO4 | Realize engineers' safety and their responsibilities, professional rights,       |
| CO5 | Interpret various types of ethics like business ethics, environmental ethics and |
| CO6 | Take part as engineers as managers, consulting engineers, engineers as expert    |
|     | GE6757 - Total Quality Management                                                |

| CO1 | Explain the customer care management systems              |
|-----|-----------------------------------------------------------|
| CO2 | Apply the leadership qualities in management              |
| CO3 | Explain the Benchmark in manufacturing system             |
| CO4 | Execute the Quality Management principles using six sigma |
| CO5 | Explain the ISO Auditing system                           |
| CO6 | Explain the customer care management systems              |

## Practicals

## EC6811- Project Work

| COs | Course Outcome: The students, after the completion of the course, are               |
|-----|-------------------------------------------------------------------------------------|
| CO1 | Analyze the various factors and techniques currently in use in their respective     |
| CO2 | Evaluate a new and border field of engineering not restricted by any boundary       |
| CO3 | Develop their ability to solve their specific problem right from its identification |
| CO4 | Study about different literature reviews till the successful solutions              |
| CO5 | Appraise the solution by formulating proper methodology related to the              |
| CO6 | Simplify the challenging engineering practical problems in real world               |