T.J.S ENGINEERING COLLEGE TJS Nagar, Thiruvallur – 601 206

Department of Electrical and Electronics Engineering

List of courses offered during 2020-21(Odd Semester)

Sl. No.	Semester	Theory/Practical	Course Code / Course Name
1	3	Theory	MA8353 – Transforms and Partial Differential
		-	Equations
2	3	Theory	EE8351 - Digital Logic Circuits
3	3	Theory	EE8391 – Electromagnetic Theory
4	3	Theory	EE8301 – Electrical Machines-1
5	3	Theory	EC8353– Electron Devices and Circuits
6	3	Theory	ME8792 - Power Plant Engineering
7	3	Practical	EC8311- Electronics Laboratory
8	3	Practical	EE8311- Electrical Machines Laboratory – I
9	5	Theory	EE8501 – Power System Analysis
10	5	Theory	EE8551- Microprocessor And Microcontroller
11	5	Theory	EE 8591 – Digital Signal Processing
12	5	Theory	EE8552– Power Electronics
13	5	Theory	CS 8392 – Object Oriented Programming
14	5	Theory	OAN551- Sensors and Transducers
15	5	Practical	EE8511- Control and Instrumentation Laboratory
16	5	Practical	HS8581 - Professional Communication
17	5	Practical	CS8383- Object Oriented Programming Laboratory
18	7	Theory	EE8701 – High voltage engineering
19	7	Theory	EE8702 – Power system operation and control
20	7	Theory	EE8703– Renewable Energy Systems
21	7	Theory	EI8075- Fibre Optics and Laser Instrumentation
22	7	Theory	OCS752 –Introduction to C programming
23	7	Theory	EE8010 –Power System Transients
24	7	Practical	EE6711 - Power System Simulation Lab
25	7	Practical	EE6712- Comprehension Laboratory Lab

Course outcomes- 2019-2020 (odd semester)

Third Semester

	Course Code: MA8353 Course Name: Transforms And Partial Differential Equations		
CO	Course outcome(CO) - Statements		
CO – 1	Understand how to solve the given standard partial differential equations.		
	Solve differential equations using Fourier series analysis which plays a vital role in engineering applications.		
CO – 3	Appreciate the physical significance of Fourier series techniques in solving one and two dimensional heat flow problems and one dimensional wave equations.		
	Understand the mathematical principles on Fourier transforms would provide them the ability to formulate and solve some of the physical problems of engineering.		
CO – 5	Construct z- transform and find inverse z-transform techniques for discrete time systems.		
CO – 6	Use the effective mathematical tools for the solutions of difference equations by using Z transform techniques for discrete time systems.		

Course Code:EE8351 Course Name: Digital Logic Circuits		
СО	Course outcome(CO) - Statements	
CO – 1	Ability to interpret number systems and simplify logical expressions	
CO – 2	Ability to construct combinational logic circuits	
CO-3	Ability to develop the synchronous sequential circuits	
CO – 4	Ability to develop the Asynchronous Sequential Circuits	
CO-5	Ability to analyze the Programmable Logic Devices	
CO-6	Ability to develop VHDL programs to design digital logic circuits	

	Course Code: EC8353 Course Name: Electron Devices And Circuits		
СО	Course outcome(CO) - Statements		
CO – 1	Explain the structure, characteristics of various diodes and their applications		
CO – 2	Analyse the operation of transistors and thyristors		
CO - 3	Analyze the small signal models transistor amplifier		
CO – 4	Examine/ Construct multistage amplifiers		
CO – 5	Describe the benefits of negative feedback for amplifier circuits		
CO-6	Explain the structure, characteristics of various diodes and their applications		

Course	Course Code: EE8301	
Course Name: Electrical Machines - 1		
CO	Course Outcome(CO) - Statement	
CO – 1	Understand the laws governing the analysis of magnetic circuits and apply the same in simplifying complicated magnetic circuits and calculating various parameters of the magnetic circuit.	
CO – 2	Understand the working principle of transformer and calculate the performance parameters of a transformer through various tests by applying various conducting suitable tests.	
CO-3	Understand the working principle of rotating machines and apply the basic laws governing magnetic circuits for calculating the force/torque experienced by an electromagnetic system.	
CO – 4	Understand the construction and working principle of DC machines	
CO – 5	Calculate various performance parameters of the machine, when running as a generator, by conducting suitable tests.	
CO-6	Apply the laws governing the working of a motor for calculating the performance parameters by conducting suitable tests.	

Course	Code: EE8391 Course Name: Electromagnetic Theory
CO	Course outcome(CO) - Statements
CO – 1	Express the basic mathematical concepts related to electromagnetic vector fields
CO – 2	Correlate the basic concepts of electrostatics, electric potential, energy density with their applications
CO-3	Discuss the basic concepts of magneto statics, magnetic flux density, scalar and vector potential and its applications
CO – 4	Differentiate the methods of EMF generation and Maxwell's equations
CO – 5	Express the basic concepts of electromagnetic waves and characterizing parameters
CO - 6	Analyze the Electromagnetic fields and apply them for the design of electrical equipment's and systems.

Course Code: ME8792 Course Name: Power Plant Engineering

Course	Course Name. I ower I lant Engineering
CO	Summarize the layout, construction and working of the components inside a thermal power plant.
CO-1	Analyze the different types of steam cycles and it's efficiencies in a steam power plant.
CO – 2	Explain the basic working principles of gas turbine, diesel engine and combined cycle power plants. Define the performance characteristics and components of such power plants.
CO – 3	Describe the working of Renewable Energy based Power plants.
CO – 4	Discuss the applications of power plants while extend their knowledge to power plant economics and environmental hazards and estimate the costs of electrical energy production.
CO - 5	List the principal components and types of nuclear reactors
CO-6	Summarize the layout, construction and working of the components inside a thermal power plant.

Laboratory

EC8311	Electronics Laboratory
CO	Course outcome(CO) - Statements
CO – 1	Explain the characteristics of semiconductor devices
CO – 2	Analyze astable and monostable multivibrators
CO – 3	Develop differential amplifiers using FET
CO – 4	Infer frequency and phase measurements using CRO
CO - 5	Construct RC, LC phase shift oscillators
CO - 6	Experiment with passive filters

Course code : EE8311 Course Name: Electrical Machines Laboratory - I		
CO	Course outcome(CO) – Statements	
CO – 1	Ability to understand and analyze DC Generator	
CO – 2	Ability to understand and analyze DC Motor	
CO – 3	Ability to understand and analyse Transformers.	

Fifth Semester

Course Co	Course Code: EE8501		
Course Name: Power System Analysis			
СО	Course Outcome (CO) - Statement		
CO - 1	Model the power system under steady state operating condition		
CO – 2	Understand and apply iterative techniques for power flow analysis		
CO – 3	Model and carry out symmetrical short circuit studies on power system.		
CO – 4	Model and carry out unsymmetrical short circuit studies on power system		
CO – 5	Model and analyze stability problems in power system		
CO-6	Model and analyze the transient behaviour of power system when it is subjected to a fault		

Course Code: EE8551 Course Name: Power Electronics		
CO	Course outcome(CO) - Statements	
CO – 1	Summarize the fundamental concepts of power switching devices.	
CO – 2	Analyze single phase power converter circuits and their application.	
CO – 3	Analyze three phase power converter circuits and their application.	
CO – 4	Analyze switching regulator circuits and their application.	
CO – 5	Analyze various harmonic reduction techniques.	
CO - 6	Develop skills to simulate converter circuits using simulation software.	

Course Code: EE8551 Course Name: Microprocessors and Microcontrollers		
CO	Course outcome(CO) - Statements	
CO – 1	Describe the functional blocks of 8085 microprocessor	
CO – 2	Develop an simple assembly language program of 8085 microprocessor	
CO – 3	Explain the architecture of 8051 microcontroller	
CO – 4	Analyze the data transfer information through serial and parallel ports.	
CO – 5	illustrate how the different peripherals are interfaced with Microprocessor and microcontroller	
CO - 6	Develop a program for various application of 8051	

Course Code: OAN551 Course Name: Sensors & Transducers	
CO – 1	Understand the concepts of measurement technology, classification of transducers & Expertise in various calibration techniques and signal types for sensors
CO – 2	Understand the working of various motion, proximity and ranging sensors
CO – 3	Learn the various sensors used to measure various physical parameters like force, magnetic and heading Sensors
CO – 4	Study the basic principles of optical, pressure, temperature sensors & smart sensors
CO – 5	Apply the various sensors in the Automotive and Mechatronics applications
CO – 6	Implement the DAQ systems with different sensors for real time applications

Course Code:EE8591 Course Name: Digital Signal Processing	
CO	Course outcome(CO) - Statements
CO – 1	Ability to understand the basic concepts of Signals and systems, their mathematical representation and quantization effects.
CO – 2	Ability to apply the Z transformation techniques on discrete time systems.
CO – 3	Ability to apply the concepts of the Discrete Fourier transformation techniques & their computation.
CO – 4	Ability to analyze the types of Finite Impulse Response filters and their design for digital implementation.
CO - 5	Ability to analyze the types of Finite Impulse Response filters and their design for digital implementation.
CO-6	Ability to understand the architecture and addressing modes of programmable digital signal processors.

Course Code: CS8392 Course Name: Object Oriented Proogramming	
СО	Course outcome(CO) - Statements
CO – 1	Develop Java programs using OOP principles
CO – 2	Develop Java programs using the concepts of inheritance and interfaces
CO – 3	Build Java applications using exceptions and I/O streams
CO – 4	Develop Java applications with threads and generics classes
CO – 5	Develop interactive Java programs using swings
CO-6	Develop an application based upon the concepts of Java.

Laboratory

Course Code:EE8511 Course Name: Control and Instrumentation Laboratory	
CO	Course outcome(CO) - Statements
CO – 1	Ability to understand control theory and apply them to electrical engineering
CO – 2	Ability to analyze the various types of converters
CO – 3	Ability to design compensators
CO – 4	Ability to understand the basic concepts of bridge networks
CO – 5	Ability to the basics of signal conditioning circuits
CO – 6	Ability to study the simulation packages.

Course Code:HS8581 Course Name: Professional Communication	
CO	Course outcome(CO) - Statements
CO – 1	Enhance the Employability and Career Skills of students
CO – 2	Orient the students towards grooming as a professional
CO – 3	Make them Employability Graduates
CO – 4	Develop their confidence and help them attend interviews successfully.

Course Code:CS8383 Course Name: Object Oriented Programming Lab	
CO	Course outcome(CO) - Statements
CO – 1	To build software development skills using java programming for real-world
CO – 2	To understand and apply the concepts of classes, packages, interfaces, array list, exception handling and file processing.
CO – 3	To develop applications using generic programming and event handling.

Seventh Semester

	Course code : EE8701 Course Name: High voltage engineering	
CO	Course outcome(CO) - Statements	
CO-1	Understand various types of over voltages experienced by the power system	
CO-2	Understand and explain the breakdown mechanism of different types of dielectrics	
CO-3	Explain the generation of High voltages and currents and apply the same for calculating the voltage to be generated for testing an apparatus of a particular rated voltage	
CO-4	Understand various methods of HV measurements and identify the appropriate measuring system for various types of over voltages and currents	
CO-5	Understand process of testing of various power system apparatus	
CO-6	Understand the significance of insulation coordination and apply the same for fixing the BIL of an apparatus	

Course code : EE8702 Course Name: POWER SYSTEM OPERATION AND CONTROL	
CO	Course outcome(CO) - Statements
CO-1	Ability to understand the day-to-day operation of electric power system.
CO-2	Ability to analyse the control actions to be implemented on the system to meet
	the minute-to-minute variation of system demand.
CO-3	Ability to understand the significance of power system operation and control.
CO-4	Ability to acquire knowledge on real power-frequency interaction.
CO-5	Ability to understand the reactive power-voltage interaction.
CO-6	Ability to design SCADA and its application for real time operation.

Course	Course code: EE8703 Course Name: Renewable Energy Systems	
CO	Course outcome(CO) - Statements	
CO-1	Understand the current energy scenario, environment aspect and renewable energy resources in India	
CO-2	Understand the basic concept of wind energy conversion system and basics of grid Integration.	
CO-3	Understand the solar energy conversion system and different types of solar plants.	
CO-4	Experiment with stand alone and grid connected PV system.	
CO-5	Explain the basic of renewable sources like Hydro, biomass and Geothermal	
CO-6	Explain the basic of different ocean energy system and Fuel cell.	

Course c	Course code: El8075	
	Course Name: Fibre optics & Laser Instrumentation	
CO	Course outcome(CO) - Statements	
CO-1	Understand the principle, transmission, dispersion and attenuation characteristics of optical fibers	
CO-2	Apply the gained knowledge on optical fibers for its use as communication medium and as sensor as well which have important applications in production, manufacturing industrial and biomedical applications.	
CO-3	Ability to apply laser theory for the selection of lasers for a specific Industrial and medical application.	
CO-4	Understand Industrial application of lasers	
CO-5	Understand about holography and Medical applications of Lasers.	
CO-6	Industrial application of lasers.	

Course code : EE8010 Course Name: Power System Transients	
CO	Course outcome(CO) - Statements
CO-1	To impart knowledge in switching and lightning transients.
CO-2	Understanding on generation of switching transients and their control.
CO-3	Ability to acquire knowledge on Propagation, reflection and refraction of travelling waves
CO-4	Understand the importance of propagation, reflection and refraction of travelling waves.
CO-5	Find the voltage transients caused by faults.
CO-6	concept of circuit breaker action, load rejection on integrated power system.

Course code : OCS752		
Course	Course Name: Introduction to C Programming	
CO	Course outcome(CO) - Statements	
CO-1	Develop algorithmic solutions to simple computational problems using basic constructs	
CO-2	Develop simple applications in C using Control Constructs	
CO-3	Design and implement applications using arrays	
CO-4	Represent data using string and string operations	
CO-5	Decompose a C program into functions and pointers	
CO-6	Represent and write program using structure and union	

Laboratory

1	Course code : EE8711 Course Name: Power System Simulation lab		
CO	Course outcome(CO) - Statements		
CO-1	Model the Transmission line of power system		
CO-2	Develop Bus Impedance and Admittance matrices for a network		
CO-3	Analysis of Load flow by numerical methods		
CO-4	Determine the fault current for the N bus system		
CO-5	Examine the stability level of Single and Multi machine system		
CO-6	Analyze the load frequency dynamics of multi area system		

Course code : EE8712 Course Name: Comprehension Laboratory		
CO	Course outcome(CO) - Statements	
CO-1	Explain Engineering fundamentals	
CO-2	Apply mathematics to engineering problem	
CO-3	Apply Engineering fundamentals to complex circuits	
CO-4	Take part in discussion as a leader in diverse teams	
CO-5	Extend knowledge on communication and presentation skills	
CO-6	Develop managerial skills to establish start ups	

T.J.S ENGINEERING COLLEGE

TJS Nagar, Thiruvallur – 601 206

Department of Electrical and Electronics Engineering

List of courses offered during 2020-21

Even Semester

Sl. No.	Semester	Theory/Practical	Course Code / Course Name
1	4	Theory	MA8491 Numerical Methods
2	4	Theory	EE8401 Electrical Machines - II
3	4	Theory	EE8402 Transmission and Distribution
4	4	Theory	EE8403- Measurements and Instrumentation
5	4	Theory	EE8451- Linear Integrated Circuits and Applications
6	4	Theory	IC8451 -control systems
7	4	Practical	EE8411- Electrical Machines Laboratory – II

8	4	Practical	EE8461- Linear Integrated Circuits and Applications lab
9	4	Practical	EE8412-Technical Seminar
10	6	Theory	EE8601 – Solid State Drives
11	6	Theory	EE8602- Protection and Switch Gear
12	6	Theory	EE 8691 – Embedded Systems
13	6	Theory	EE8002 Design of Electrical Apparatus
14	6	Theory	EE8005 Special Electrical Machines
15	6	Practical	EE8661 Power Electronics and Drives Laboratory
16	6	Practical	EE8681 Microprocessors and Microcontrollers Laboratory
17	6	Practical	EE8611 Mini Project
18	8	Theory	EE8015-Electric. Energy. Generation,. Utilization and
			Conservation
19	8	Theory	EE8017-High Voltage Direct Current Transmission
20	8	Theory	EE8811 – Project work

Semester: 04 Course Name: Numerical methods (MA8491) Year of study: 2019-20 and 2020-21(2017 Regulation)		
CO – 1	Find the solutions of algebraic and transcendental equations	
CO – 2	Choose power method for Eigen values	
CO-3	Apply the concept of Numerical differentiation and integration in engineering	
CO – 4	Examine Initial value problem for Ordinary differential equation	
CO – 5	Apply the boundary value problem in PDE and ODE	
CO-6	Solve the Linear system of Equation	

Semester: 04		
Course Name: Transmission & Distribution (EE8402)		
Year of study:	2019-20& 2020-21 (2017 Regulation)	
CO – 1	To understand the importance and the functioning of transmission line parameters.	
CO – 2	To understand the concepts of Lines and Insulators.	
CO – 3	To acquire knowledge on the performance of Transmission lines.	
CO – 4	To understand the importance of distribution of the electric power in power system.	
CO – 5	To acquire knowledge on Underground Cabilitys	
CO-6	To become familiar with the function of different components used in	
	Transmission and Distribution levels of power system and modeling of these components.	

Semester: 04	
	Electrical Machines-II (EE8401)
Year of study:	2019-20 & 2020-21 (2017 Regulation)
CO – 1	Ability to understand the construction and working principle of Synchronous Generator
CO – 2	Ability to understand MMF curves and armature windings
CO – 3	Ability to acquire knowledge on Synchronous motor.
CO – 4	Ability to understand the construction and working principle of Three phase Induction Motor
CO – 5	Ability to understand the construction and working principle of Special Machines
CO - 6	Ability to predetermine the performance characteristics of Synchronous Machines.

Semester: 04 Course Name: Linear integrated circuits and applications EE8451 Year of study: 2019-20& 2020-21 (2017 Regulation)		
CO – 1	Outline the fabrication process of IC	
CO – 2	Illustrate the ideal and non ideal characteristics of op-amp	
CO – 3	Explain various applications of op-amp.	
CO – 4	Design the different types of oscillators and ADC,DAC	
CO – 5	Illustrate various application ICs	
CO-6	Explain the working of special function ICs.	

Semester: 04			
Course Nam	Course Name: Measurements and Instrumentation EE8403		
Year of stud	ly: 2019-20& 2020-21 (2017 Regulation)		
CO – 1	Outline the fabrication process of IC		
CO – 2	Explain the working principle of electrical measuring instruments		
CO – 3	Interpret the resistance, capacitance and inductance using bridges		
CO – 4	Select the storage devices for measuring electrical quantities		
CO - 5	Choose the analog and digital display devices for measuring electrical quantities		
CO-6	Identify the type of electrical transducers for physical quantities		

Semester:	Semester: 04		
Course Na	Course Name: Control Systems-IC 8451		
Year of stu	dy: 2019-20 (2017 Regulation)		
CO – 1	Develop various representations of system based on the knowledge of Mathematics, Science and Engineering fundamentals.		
CO – 2	Illustrate the time response of first and second order systems using standard test signals and the use of PID controller in closed loop system.		
CO – 3	Examine the frequency-domain response of various models of linear system.		
CO – 4	Identif y a compensator system for the given specifications.		
CO – 5	Interpret characteristics of the system to develop mathematical model in state-variable form (state variable models)		
CO - 6	Perceive the solution for complex control problem.		

Course Code: EE8411 Course Name: Electrical Machines Laboratory – II		
CO	Course outcome(CO) - Statements	
CO – 1	Ability to understand and analyze EMF and MMF methods	
CO – 2	Ability to analyze the characteristics of V and Inverted V curves	
CO – 3	Ability to understand the importance of Synchronous machines	
CO – 4	Ability to understand the importance of Induction Machines	
CO – 5	Ability to acquire knowledge on separation of losses	

Course Code: EE8461 Course Name: Linear and Digital Integrated Circuits Laboratory		
СО	Course outcome(CO) – Statements	
CO – 1	Ability to understand and implement Boolean Functions	
CO – 2	Ability to understand the importance of code conversion	
CO – 3	Ability to Design and implement 4-bit shift registers	
CO – 4	Ability to acquire knowledge on Application of Op-Amp	
CO – 5	Ability to Design and implement counters using specific counter IC.	

Course Code: EE8412 Course Name: Technical Seminar	
CO	Course outcome(CO) – Statements
CO 209. 1	To encourage the students to study advanced engineering developments
CO 209. 2	To prepare and present technical reports.
CO 209. 3	To encourage the students to use various teaching aids such as overhead projectors, power point presentation and demonstrative models.

Semester: 06 CourseName:Design of Electrical Apparatus(EE8002) Year of study: 2019-2020& 2020-21 (2017 Regulation)	
CO – 1	Ability to understand the design consideration for rotating and static electrical machines
CO – 2	Ability to design field systems for its application
CO – 3	Ability to design single and three phase transformers.
CO - 4	Ability to design field and armature of DC machines.
CO – 5	Ability to design stator and rotor of induction motor.
CO - 6	Ability to design and analyze synchronous machines.

Semester: 06 Course Name: Solid State Drives (EE8601) Year of study: 2019-20 & 2020-21 (2017 Regulation)	
CO - 1	Ability to understand and suggest a converter for solid state drive
CO – 2	Ability to select suitability drive for the given application
CO – 3	Ability to study about the steady state operation and transient dynamics of a motor load system
CO – 4	Ability to analyze the operation of the converter/chopper fed dc drive
CO – 5	Ability to analyze the operation and performance of AC motor drives
CO-6	Ability to analyze and design the current and speed controllers for a closed loop solid state DC motor drive

Course N	Semester: 06 Course Name: Protection and Switchgear (EE8602) Year of study: 2019-20& 2020-21 (2017 Regulation)	
C302.1	Explain the causes of abnormal operating conditions of the apparatus and system.	
C302.2	Illustrate the Characteristics & functions of Electromagnetic Relays.	
C302.3	Apply different protection schemes for apparatus protection	
C302.4	Explain the characteristics and functions of Static & Numerical Relays	
C302.5	Demonstrate the various abnormal behaviour happens during circuit breaker operation	
C302.6	Explain the working of different types of Circuit Breakers	

Semester: 06	
Course Name: Embedded Systems-EE 8691	
Year of stu	dy: 2019-20& 2020-21 (2017 Regulation)
CO1	Understand and Analyze Embedded systems.
CO2	Distinguish the bus communication in processors.
CO3	Operate various Embedded Development Strategies
CO4	Understand basics of Real time operating system.
CO5	Classify various processor scheduling algorithms.
CO6	Interpret an embedded system for a given application.

Course	Semester: 06 Course Name: SPECIAL ELECTRICAL MACHINES (EE8005)	
Year of	study: 2019-20& 2020-21 (2017 Regulation)	
CO1	Explain the performance characteristics of synchronous reluctance	
	motors.	
CO2	Classify the excitation modes of stepping motor	
CO3	Construct the power converter circuits for Switched reluctance	
	motor	
CO4	Analyze the magnetic characteristics of brushless D.C motor	
CO5	Compare the control methods of permanent magnet synchronous	
	motor	
CO6	Analyze the logical sequence operation of special machines by	
	using Software program.	

Semest	Semester: 06	
	Name: Microprocessors and Microcontrollers Laboratory(EE8681)	
Year of	Year of study: 2019-20& 2020-21 (2017 Regulation)	
CO1	Develop the simple arithmetic operations using 8085 processors	
CO2	Explain the interfacing techniques using 8051 microcontrollers	
CO3	Analyze two 8051 kits using serial communication.	
CO4	Develop simple programs using 8051 controllers	
CO5	Demonstrate basic instructions using 8051 microcontroller	
CO6	Design and implementation of embedded system based projects	

Semeste	Semester: 06	
Course	Course Name: Power Electronics and Drives Lab(EE8661)	
Year of	Year of study: 2019-20& 2020-21 (2017 Regulation)	
CO1	Demonstration of firing circuits	
CO2	Analyze static and dynamic characteristics of switching devices	
CO3	Experiment with converters.	
CO4	Experiment with switch mode power supplies.	
CO5	Experiment with switching regulators.	
CO6	Analyze the converter circuits using simulation software	

Semester VIII

Semes	Semester: 08	
Course Name: Electric Energy Generation Utilization and Conservation(EE8015)		
		Year o
CO1	Impart knowledge To understand the main aspects of generation, utilization and conservation.	
CO2	To identify an appropriate method of heating for any particular industrial application	
CO3	Classify domestic wiring connection and debug any faults occurred	
CO4	To construct an electric connection for any domestic appliance like refrigerator as well as to design a battery charging circuit for a specific household application	
CO5	To realize the appropriate type of electric supply system as well as to evaluate the performance of a traction unit.	
CO6	To understand the main aspects of Traction.	

Course	Semester: 08 Course Name: EE8017-High Voltage Direct Current Transmission(EE8017)		
Year o	Year of study: 2020-21		
CO1	To understand the principles and types of HVDC system.		
CO2	To analyze and understand the concepts of HVDC converters.		
CO3	To acquire knowledge on DC link control.		
CO4	To understand the concepts of reactive power management, harmonics and power flow analysis		
CO5	Planning of DC power transmission and comparison with AC power transmission.		
CO6	To understand the importance of power flow in HVDC system under steady state.		

Semeste	Semester: 08	
Course 1	Course Name: Project Work(EE8811)	
Year of study: 2020-21		
CO1	Explain the engineering concepts	
CO2	Solve problems to new situations with knowledge, facts, techniques and rules in a different way	
CO3	Discover new computational platform in electrical & electronics fields	
CO4	Determine the performance of complex power network	
CO5	Formulate real world problem with global outlook	
CO6	Improve the managerial skills to meet the industry	